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The nonlinear stability of a thermally stabilized horizontal plane layer of dielectric 
liquid subjected to unipolar charge injection at a voltage near the linear instability 
threshold is investigated using a normal-mode cascade analysis valid for small per- 
turbation amplitudes. In this first analysis, the primary mode is chosen to be a system 
of parallel rolls whose amplitude varies aperiodically with time. The branching be- 
haviour at  the critical voltage is found to reflect the distinction, apparent in the linear 
instability problem, between an essentially isothermal space-charge instability and 
an instability dominated by the effects of an ion mobility varying with temperature. 
The effect of motion on heat and charge transfer through the system is also considered. 
Furthermore, in certain cases it appears that overstability is the preferred form of 
linear instability. 

1. Introduction 
Perhaps the simplest configuration exhibiting the destabilizing effect of an electrical 

field on an otherwise thermally stable layer of dielectric liquid is the parallel plate 
system considered experimentally by Gross & Porter (1966) and Turnbull (1968b). 
Attempts to explain this phenomenon have been made by several authors including 
Turnbull (1968a), Roberts (1969), Takashima & Aldridge (1976), Bradley (1978) and, 
most recently, Worraker & Richardson (1979). This latter study has its motivation 
in the use of strong d.c. electric fields in the augmentation of single-phase heat transfer 
in non-polar dielectric liquids. In  such a hostile environment local flow velocities and 
electric fields may be determined indirectly by means of laser doppler anemometry 
and the electro-optical Kerr effect respectively. However, temperature profiles are not 
easily obtainable. From a practical point of view therefore it is ultimately desirable 
to have a means of predicting changes arising from fluid motion in the more readily 
measurable system parameters such as heat flux and total electrical current. In  order 
to achieve this, however, an analysis of nonlinear interactions is required. 

The stationary linear instability analysis of a unipolar charge injection equilibrium 
in which the carrier mobility depends linearly on temperature has shown that two 
types of instability can be distinguished. Dependingupon theamount of injected charge 
and the s ign  and magnitude of the temperature-induced variations in mobility across 
the layer, there appears either a thermally modified space-charge mode or a B6nard- 
type space-charge mode (Worraker & Richardson 1979). Although the destabilizing 
force is electrophoretic in both cases, in the former the instability is essentially 
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the same as in isothermal electroconvection (Felici 1969) whilst in the latter it is 
essentially due to the thermal variation of mobility. It might therefore be conjectured 
that if the equilibrium is subjected to aperiodic disturbances then the local nonlinear 
behaviour of the system should further reflect this distinction. 

As a first step in the investigation of the nonlinear behaviour of the Worraker & 
Richardson model we employ a normal-mode cascade approach (Segel 1965). This 
weakly nonlinear method of analysis, involving a successive approximation procedure, 
was selected from among the various available techniques (Segel 1966; Joseph 1976) 
because of its close dependence on the linear problem and its relative simplicity of 
formulation. It is a local form of analysis whose validity is therefore restricted to  small 
perturbation amplitudes. Implicit in the method is the idea that the energy of a flow 
disturbance is initially concentrated in a primary mode, usually the mode deemed 
most unstable by linear theory, which by self-interaction generates a secondary mode 
and by further interactions produces third- and higher-order modes. Whilst in prin- 
ciple this method may be extended to the case of an arbitrary number of primary 
modes we confine this f i s t  analysis to a system of parallel rolls characterized by a 
single horizontal wavenumber. Although we cannot determine the preferred planform 
of motion by this method, if the equilibrium is subcritically unstable against rolls we 
can, provided that turbulent motion does not occur, infer the likelihood of hysteretical 
phenomena. Furthermore we might in general expect the various physically possible 
planforms to lead to similar heat and charge transfer characteristics. 

W .  J .  Worraker and A .  T .  Rkhrdson 

2. Formulation of the problem 
2.1. T’he equilibrium formulation 

The model investigated by Worraker 6 Richardson (1979) comprises a dielectric liquid 
contained between two perfectly conducting rigid horizontal planar electrodes of in- 
finite extent. In a rectangular Cartesian co-ordinate system (x, y, z )  the emitter is 
located in the plane z = 0 and the collector, which is maintained at  earth potential, 
is located in the plane z = d. The liquid is assumed to be incompressible with constant 
kinematic viscosity v, thermometric conductivity K and electrical permittivity E ,  and 
is subjected to autonomous unipolar charge injection. The carrier mobility K is 
assumed to vary linearly with temperature so that 

where T denotes temperature, k, is a positive constant and the suffix ‘O’, here and 
subsequently, indicates a quantity evaluated at  the emitter. The governing electro- 
hydrodynamic equations then possess a steady one-dimensional hydrostatic equili- 
brium solution in which electrical current density j = [0, 0, j(z)], electric field 
E = [0, O,E(z)] ,  space-charge density & = &(z )  and electrical potential q5 = $(z) .  

K ( T )  = Ko[1+ k,(T - 5 3 1 9  (2.1) 

T = To+@%, K = K o ( l + k l p ~ ) ,  
We find that 
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where q(z) is defined by 

and /3 denotes the average temperature gradient. The fixed temperature and potential 
boundary conditions 

are satisfied by this equilibrium provided that 

(2.10) 

The fifth boundary condition required to specify the equilibrium fully is derived from 
an injection law. In essence we need only further specify the emitter space-charge 
density Qo as a function of E,. In the limit of strong injection, i.e. space-charge-limited 
current, Qo + win which case we specify theemitter fieldE, = 0 (of. Richardson 1980). 

2.2. Perturbation equu.tion.8 

When the equilibrium state (2.2)-(2.10) is perturbed the subsequent evolution of the 
system can be described. in terms of a three-dimensional vector X = (a, 0, @)T, 
whose components a, 0 and Q, represent the non-dimensionalized perturbations in 
the z component of velocity, temperature and electrical potential respectively. The 
governing nonlinear partial differential equations can then be written in the form 

where L and N denote real matrix differential operators. The linear matrix operator 
L is chosen to be independent of time and the voltage parameter A, say, and only 
contains operators appropriate to the linear marginal-state problem. Incorporating 
the time derivatives explicitly in L would lead to a series of approximations that is 
not uniformly valid in time (cf. Segel 1965, 1966). On the other hand the nonlinear 
operator N contains time derivatives and ‘out of balance’ terms proportional to 
A-A,, the deviation of the voltage parameter from its critical value as determined 
from the onset of linear instability. 

By scaling lengths, velocity components, temperature and electrical potential 
against layer thickness d ,  K/&, /3d and $o aa well as K, Q a d  E against KO, Qo and 
#o/d respectively and on writing 

a s  
v p  - va-, 

L(X) = WX), (2.11) 

1 - azs’ 

where a1 is the liquid thermal expansion coefficient, we can define 

8 

(2.12) 

(2.13) 

FLY XOp 
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with 
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&( ) = - BVI[EV2( ) - C ( W )  ( * )I 
Z a a ( * )  = K ~ B C E ~ D  - , [(I;)] (2.14) 

z,( = - B D[KEv( 11 + c[D(KQ)I D( 1) . J r 
Here D denotes differentiation with respect to the non-dimensionalized z co-ordinate. 
Furthermore if we write N(X) = [Nl(X), N,(X), N3(X)]T then 

a N,(X) = -P-0-U.V0, 
at 

a 1 
P N2(X)  = (VQ) - - 5, + B(A2 - A:) QEVO - C(DQ) @] 

+ BA2{V2OD(V2@) + V@ . V[D(V2O)] - V(D@) . V(V20) - (DO) V4O}, 
a 
at I N3(x) = P- (v2@) - K I B ( A  - h,) CE,D(@/K)  

+B(A - A,) (E-lD(KE2V20) + C[D(KQ)] DO} 
+ u . V(VZO) + K1BAE-1D(Ea0V2@) + K,BhCV@. V(Q0) 
-BA[K(VW) ( V W )  + VO . V(KV2O)I 
-K,BA[VO . V ( 0 V W )  + O(VW) (VW)], 

(2.15) 

(2.16) 

(2.17) 

where u is the scaled fluid velocity vector, 5, is the z component of curlz (u . Vu) and 
the Boussinesq approximation for density variations has been made. 
This ninth-order system of equations (2.11)-(2.17) is subject to the no-slip, fixed 

temperature, fixed potential and autonomous injection boundary conditions 

Q = D Q =  0 = O =  0 at z =  0,1, (2.18) 

and D 2 0 = 0  at z = O .  (2.19) 

In the space-charge-limited case, however, the autonomous injection condition (2.19) 
must be replaced by 

D @ = O  at z = O .  (2.20) 

2.3. The iteration scheme 

The successive approximation employed here involves the expansion of the vector X 
and the right-hand side of (2.11) as power series in the time-dependent perturbation 
amplitude, A(t), that satisfies an ordinary differential equation yet to be determined. 

x = A X ,  + A ~ X ,  + A ~ X ,  + o ( ~ 4 )  (2.21) 
We write 

and N(X) = Y = A2Y1+A3Y2+O(A4), (2.22) 

where the Y, (i = 1,2 ,3 ,  ...) are derived from the definitions (2.15)-(2.17). Equating 
coefficients of successive powers of A then gives rise to a sequence of equations of the 
form : L(X,) = 0; (2.23a) 

L(X,) = Y,, i = 1 , 2 , 3  ,... . (2.23 b) 

Equations ( 2 . 2 3 ~ )  together with the appropriate boundary conditions constitute just 
the linear instability problem whose solution provides eigenvalues, of which A, ie the 
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lowest, and corresponding eigenmodes X,. In order to proceed further we must specify 
the (x, y)  dependence or planform of the primary mode. As a first attempt we consider 
therefore two-dimensional parallel rolls characterized by a dimensionless wave- 
number a so that 

x, = [a,@, y, 4, @,(x, Y, z ) ,  %I(”, y, z)IF = x,(z) C 0 S f - w  (2.24) 

where XO(4  = “KM G,(z), Fo(z)IT. (2.26) 

The ordinary differential equation satisfied by the amplitude A ( t )  results from 
solvability criteria for the inhomogeneous differential equations (2.23 b). Because of 
the unboundedness of the liquid layer and the special symmetry of the chosen primary 
planform, these criteria lead to a Landau-type equation which may be written in the 
form 

dA/dt = U S A  - yA3, (2.26) 

correct to order As, where s = (A-A,)/&, and a and y are taken to be order one 
quantities implying that dA/dt - As, and s - A2. Since (2.26) is only relevant for 
181 < 1 and the definitions (2.15)-(2.17) contain terms proportional to 

A2-A: = 8 ( 2 + 8 ) A $ ,  A 2  = A:(l +$)a and A = A,( 1 + s) 

we make the leading-order approximations As-  A: 2: 2sAa; A 2  11 A! and A N- A, for 
these expressions. Because of the rather special chosen form of X, [cf. (2.24)] it  appears 
that in solving L(X,) = Y, we do not require a solvability condition. However, the 
solution does give rise to ’x-independent expressions for heat flux and current flow 
correct to order A2.  On the other hand, having of necessity constructed and solved 
the linear adjoint problem L*(&*) = 0, together with the adjoint boundary conditions, 
the solvability condition applied to the cos ax dependent part of the system L(X2) = Y, 
does produce an amplitude equation of the expected form (2.26). 

3. The normal-mode cascade 
3.1. The second-order problem 

Since Y, is composed of terms independent of x and terms proportional to C O S ~ U Z ,  

we write the solution of the second-order problem L(X,) = Y, in the form 

(3.1) 

so that the system of equations L(X,) = Y, may be decomposed into the two separate 
ordinary differential systems 

x, = X l O  + Xl2 cos 2ax, 

L(0$ClO = Yp (3.2) 

and (3.3) 

wherex,, = (KO, Glo, Fl,)T,~12 = (K2, G,,,F,,)Tand U0), L(2)and Yio) and Yi2) are defined 
in the appendix [cf. (A 1 )-(A ?)I. The boundary conditions on xlo and x12 are the same 
as those on xo, in component form being 

V,, = DV,, = B,, = F,, = 0 at z = 0 , l  
and D2Plo = 0 at z = 0 (finite injection) 
or DF,, = 0 at z = 0 (SCLC), 

(3-4) 

8.-2 
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and similarly for the components of x12. It can be seen immedia.tely from the 
definitions of L@) and Yio) that 

which in conjunction with the above boundary conditions on V,, leads to 
D4v,, = 0, (3.5) 

l i O ( Z )  = 0. (3.6) 

This implies that there is no mean flow in the z direction to order A2,  and is a necessary 
consequence of the equation of continuity. We then find by integration and the 
application of boundary conditions on Q,, that 

It is also possible to write down integral expressions for F,, in terms of Glo, 6, Go, 
4, K ,  E ,  Q and the dimensionless system parameters (2.12). The fact that only (3.2) 
is soluble by direct integration is related to the mean-field character of its solution, 
continuity and the constancy of mean heat flux and mean current flow acroas the 
layer. Having obtained numerical solutions to both (3.2) and (3.3), these latter two 
properties of the system may be used as r i  check on the solution of (3.2). 

3.2. Heat and charge transfer 
The heat flux in the z direction arises from both thermal diffusion and fluid oonvection. 
Spatial averaging over the horizontal (x, y) plane, denoted by a bar, leads to the 
dimensional expressions 

I& = - kaT'/& (3.8) 

and IIc = pcP w(T - P ) ,  (3.9) 
for these respective contributions. The constant k is the liquid thermal conductivity, 
cp its specific heat at constant pressure and w the z component of velocity. Since 

= To+,!3z+fi, in terms of the temperature perturbation 8T, and by continuity 
G = 0, the Nusselt number N u ,  defined as the ratio of total averaged heat flux to the 
conductive heat flux in the absence of motion, may be expressed in the form 

1 a -  1 -  
NU = 1 +- - 8 T - d  w ~ T ,  

paz P K  
(3.10) 

where K = k/pc,. In terms of dimensionless quantities this is equivalent to 

which on substituting 

and 

from (2.21), (2.24), (3.1) and (3.6) and using (3.7), reduces to 

NU = l+DG-GG, (3.11) 

(3.18) 

(3.13) 

SZ = A% cos ux + A2V,, cos 2nx + O(A3) 

0 = AGO cos ax + A2(G,, + a,, cos 2ux) + O(A3) ,  

NU = 1 + A ~ ( D G , ,  - +v,G,) + o ( A ~ )  

= 1 +A2DG,,(0) + O(A4). (3.14) 

From (3.14) we see that indeed the Nusselt number, as defined, is a system parameter 
independent of z. 
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The spatially-averaged z component of the current density, comprising terms due 
to drift and convection but neglecting charge diffusion, is given in dimensional 
variables by 

(3.15) 

where a# is the perturbation in electrical potential. Then the electrical Nusselt number 
Ne, defined as the ratio ofjz to its value in the absence of motion, takes the dimension- 
less form 

(3.16) Ne =-(C&-V2@) ( K + K ~ ~ ) ( E - D @ ) + -  . [ B A  "I 1 

CEO 

Using (3.12) and (3.13) together with the expansion 

then leads to 
@ = AFo COB ux + A2(Flo + Fla cos 2 ~ 4  + O(A9) (3.17) 

where again the approximation A N A, has been made. It is a straightforward matter 
to show from the third equation of system (3.2) and the definitions (A 1) and (A 6) 
that the expression (3.18) is independent of z as expected. In the case of finite injection 
for which PFlO(O) = 0 [cf. (3.4)] we find that evaluating Ne at the emitter gives 

However, in the case of space-charge-limited current a filtering of the singular be- 
haviour of D2Fo and of PFl0 is necessary if the expression (3.18) is to be evaluated 
at z = 0. 

In general both N u  and Ne as given by (3.14) and (3.18) are functions of time and 
of the scaled voltage parameter 8. Their explicit dependence on these quantities, how- 
ever, can only be determined by evaluating constants a and y and then solving the 
amplitude equation (2.26). 

3.3. The amplitude equution 

The solvability condition required to guarantee the existence of a non-trivial solution 
of the third-order problem 

L(X2) = ya (3.20) 

is derived from the theory of the Fredholm alternative (see, for example, Ince 1927; 
Milne 1980). In  the present context this implies that Y, must be orthogonal to the null 
space of the adjoint operator L*. Then the amplitude equation is derived from the 
constraint 

(Y,,XO*) = 0, (3.21) 

where &* is any solution of the linear adjoint problem 

L*(&*) = 0, (3.22) 
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and where the inner product may be defined by 
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{f,g) =s' 0 0  [S'laf(s,z).g(Z,z)ds I dz (3.23) 

for any square integrable vector functions f and g. The adjoint operator L* and the 
adjoint boundary conditions are derived from the definition 

Wf), 9) = <f, L*(g)). (3.24) 

Performing these integrations we find that 

v4 ""I 1 
-V' -RVI Acl& , 

0 hc& &I 

L* i 

where 

I 
(3.26) 

(3.26) 

Furthermore, on writing 

X;: = no*@) COB ~XX = [ V$(Z),  Q$(z), F$(z)]*, (3.27) 

the adjoint boundary conditions are found to be 

I V t  = Q$ = DQ$ = 0 at z = O , l ,  

Ft = DFZ = 0 at z = 1  
(3.28) 

(3.29) 

Once the adjoint problem (3.22) has been solved and the integrations implied by 
(3.21) performed we can obtain the Landau amplitude equation (2.26) with constants 

and E,,DF; - CP$ = 0 at z = 0 (finite injection), 

Or Ft = 0 at 2 = 0 (SCLC). 

(3.30) 

where the various integrals Iij are defined implicitly in the appendix [cf. (A 8)-(A IS)]. 
It is clear that these values of a and y then determine the character of the branching 
steady solutions ofamplitude A,, given by 

A, = f ( m / y ) 4  (3.31) 

in the immediate vicinity of the bifurcation point. 

.4 

4. Numerical analysis 
4.1. Numerical solution 

The systems of equations (2.23a), (3.22), (3.2) and (3.3) together with their respective 
boundary conditions were solved numerically, and the steady Nusselt numbers 
Nu(A2), Ne(Aa) and parameters a and y evaluated on a CDC 7600 machine using an 
integrated Chebyshev collocation program based on that used to solve the linear 
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problem (Worraker t R i c h d o n  1979).t The case of space-charge-limited current 
was solved separately because of the neqessity of filtering out the singular behaviour 
of the solution in the vicinity of the emitter. In all reported cases the degree of Cheby- 
shev polynomial approximation was 25. 

This integrated program involved first solving, in each caae, the linear problem 
(2.23a) as before with a = a, corresponding to the minimum of the neutral stability 
curve A = A(a). Slightly varying the value of wavenumber a had, aa might have been 
expected, little effect on the nonlinear results in those caaes investigated. Secondly 
the adjoint problem defined by (3.22), (3.26)-(3.29) was solved in a similar manner, 
and provided a useful check on the numerical method employed. Since the eigenvalues 
of these two problems must be complex conjugates of each other, the same real values 
of A, should be produced in both cwea. It waa found that the values of A, produced by 
solving these problems agreed to at leaat seven signiscant figurea for C 5 2, only to 
three or four figures for C = 100 and to four or five figures for the caae of infinite C. 
The loss of close agreement probably reflects the progressively poorer convergence 
of the unfiltered Chebyshev series found as C increases beyond the O(1) range. A 
further point of note is that the normalization of X,, and &* was achieved by taking 
V,(g) and a,*(&) respectively as unity. A possible alternative would have been to use 
max IV,(z)l and max IQt(z)I for z E [0,1] but this produced very similar magnitudes 
for V,, at etc. and indeed gave identical results for Nu(s) and Ne(s). 

Solution of the second-order mean-field problem (3.2) waa by a Chebyshev colloca- 
tion technique so that it waa transformed into the linear algebraic form 

where x,, and ylo are 3N + 3 element column vectors and L,, is a (3N + 3) x (3N + 3) 
matrix, N being the degree of Chebyshev polynomial representation of x,, xQ,  xlo 
and Xln. Matrix L,, consists of nine (N+ 1) x (N+ I) blocks corresponding to the nine 
operators constituting the elements of L(0) together with the appropriate boundary- 
equation operators. The particular choice of collocation points and the location of 
boundary conditions corresponded to those used in the numerical linear problem [cf. 
Worraker & Richardson 19791. 

LlOXlO = YlO, (4.1) 

The quantities rl = lim [(Nu- I)/A*] and rs = lim [(Ne - 1)/A8], as defined by 
d-+O d 4  

using the first equation (3.14) and (3.18) respectively, were evaluated for various 
ZE [0, I] by reconstructing the components of xo(z) and xlo(z) using the appropriate 
Chebyshev coefficients. In addition to providing values therefore for dNu/d(A*) 
and dNe/d(AB) at the point of bifurcation, this exercise provided a check on 
the consistency of the results of the mean field problem. As a further check the 
coefficients of A* in the second line of (3.14) and (3.19) were also calculated. These 
checks were found to give mutually consistent results to at leaat seven significant 
figures for both rl and rl whenever C Q 2. Indeed the worst variation in rl for any 
value of C waa in the fifth significant figure. However, rz was found to vary significantly 
with z, by at most a factor of two, for finite but large (2: 100) values of C. This was 
again attributed to the poor Chebyshev polynomial representation of the unfiltered 
functions Fo(z) and Flo(z). 

The fourth stage waa the solution of the second-order problem (3.3) in a mmner 
t The de6nitiona of M1 and MS umd in equation (4.4) in this reference me incorrect. They 

should read Ml = - (A,-  B,B;'A,)-' CaCF'Aa and 4 = (AS-BaBC'A,)-l CaCC'BaB;'Al. 
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similar to that used for (3.2) with W, x12and Yia) replacing L(O), xlo andYio) respectively 
[cf. (4.1)]. The evaluation of a and y was then accomplished by using standard inte- 
gration routines, the integrand values being reconstructed directly from Chebyshev 
series representations. 

4.2. Numerical resuk~ 
A weakly stabilizing temperature difference of 1 "C across a layer of n-hexane or 
chlorobenzene of depth 0.5 mm or of 12 "C across a layer of transformer oil of depth 
1 mm corresponds to a Rayleigh number R 21 - 20. For n-hexane we may estimate 
that KO 2: lo-' ma V-l s-l, P N 3.8, M 2 1.6 and B N 1.5; for chlorobenzene 
KO 2: 4.5 x 10-8 ma V-l s-1, P N 4.6, M N 4.8 and B 2: 0.2; and for transformer oil 
KO 21 3 x 10-lo m2 V-l s-l, P 2: 460, M N 480 and B = 0.002. Most nonlinear results 
were obtained for the latter two fluids. Calculations were performed mainly for 
R = - 20, C = l O - l ,  1, the range 
of K~ values corresponding to the case of a cold emitter. Isothermal conditions were 
then modelled by setting R = K~ = 0. 

We see from figures 1 and 2 that for K~ 2 0 the ( K ~ ,  C) plane may be divided into 
two main regions, according to the character of the bifurcating solutions as defined 
by the signs of u and y. For large C and small K ~ ,  corresponding to the thermally 
modified space charge regime of the linear instability problem, we have a domain 
[cf. region (a)] of unstable subcritical solutions for which a > 0 and y < 0. For smaller 
C and larger K ~ ,  corresponding to the B6nard-type space-charge regime of the linear 
instability problem we have a domain [cf. region (b)] of stable supercritical solutions 
for which a > 0 and y > 0. We see also that the boundary between these two regions 
is shifted somewhat in the smaller C and larger K~ direction in going from M 21 4.8 
to M N 480, and that for a fixed injection strength C it  is again the value of B which 
appears to determine the dominant mode of instability. 

On choosing an ion drift velocity scale K0q5,/d, the slope a/y [=  (a/y),l] of the 
curve at 8 = 0 [cf. (3.31)] in region (a) appears generally to increase in magnitude 

with C and K ~ ,  taking values comparable to those of the related isothermal problem 
(Lacroix 1976). This is perhaps to be expected. On the other hand if region (b) is 
taken to correspond to a BBnard-type instability dominated by the effects of an ion 
mobility varying with temperature [cf. Worraker & Richardson 19791 we would 
expect the amplitude of steady convection to be controlled by the balance between 
convective heat flux and the lateral heat flux due to conduction. This suggests the 
use of a thermal velocity scale K / d  in this region. The resulting values of a/y [ = ( o I / ~ ) ~ ~ ]  
are found to be approximately constant ( 2: 300) for small C as suggested by our inter- 
pretation of the destabilising mechanism. In figure 2, corresponding to transformer 
oil, we find that for sufficiently strong injection a BBnard-type instability gives way 
to a space-charge-dominated one. From figure 1 ,  on the other hand, corresponding to 
the case of chlorobenzene we see that the BBnard-type instability persists even for 
space-charge-limited currents whenever K~ 2 0.1. 

From a practical standpoint, perhaps the most interesting result of the heat flux 
calculation is the variation of Nusselt number with applied voltage. ThiR is obtained 
from the product ~ ~ ( u / y ) ~ ~  [see tables 1 and 21. The parameter 

tO- l ,  1, 10, 100,oo and K~ = 0, 

rl = lim [ ( N u -  1)/A2] 2: 
A+O 
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FIGURE 1 .  Nonlinear stability characteristics of a liquid with B = 0.2, P = 4-6 ( M  2: 4.8) 
(e.g. ohlorobenzene) and R = -20. The positive figures adjacent to data points are values of 
( I Z / ~ ) ~ , , .  Negative figurea are values of (a/y)e,. Region (a) is a domain of unstable subcritical 
solutions denoted by x and region (b )  is a domain of stable supercritical solutions denoted by a. 
The symbol 0 indicates that no solution was found. 

in all cases and varies almost inversely with the wavenumber a. For most cases of 
supercritical bifurcation ~ , ( a / y ) , ~  2 3 implying that while steady roll motion prevails 
the Nusselt number will grow to several times unity before the voltage is raised to 
twice its critical value. This of course is only suggestive and presupposes that the 
analysis remains approximately valid outside the small 1s I -range. The electrical 
Nusselt number is correspondingly obtained from the product r2(a/y),i [see tables 1 
and 21. The parameter r2 = lim [ ( N e  - 1)/A2] N 0.5B in region (b)  of the ( K ~ ,  C) plane 

whereas in region (a) it is an increasing function of C. For the case of supercritical 
bifurcation the electrical Nusselt number N e  is therefore proportional to B(a/y),le. 
Whilst the results for the subcritical bifurcation regime are not physically verifiable 
they do appear to be of the same order of magnitude as those found by Lacroix 
(1976). 

A 4  
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X -6.02 x -6.09 x -6.80 x -19.8 

Region (a )  

x -3.27 x -3.31 x -3.77 -12.5 

518 22 1 1020 

I i  Region ( b )  

I I 1 I . 
0 0.00 I 0.0 1 0. I I .o 

KI 

FIGWBE 2. Nonlinear stability characteristics of a liquid with B = 0.002, P = 460 ( M  2: 480) 
(e.g. transformer oil) and R = -20. The positive figures adjacent to data points are values of 
(oc/Y)~,, .  Negative figures are values of (a/y),. Region (a) is a domain of unstable subcritical 
solutions denoted by x and region ( b )  is a domain of stable supercritical solutions denoted by . 
The symbol Q denotes w e s  for which a < 0. 

A result worthy of special note is the occurrence of negative values of a for K~ = 0, 
R = - 20, B = 0.002, P = 460 when C = 0-001 and C = 0-01 [cf. figure 21. This implies 
that the equilibrium configuration is linearly unstable to the steady mode under 
consideration when h < A, and linearly stable with respect to it when h > A,. The 
reasons for these perhaps at  first puzzling results were investigated numerically by 
considering the time dependent linear perturbation problem. A Chebyshev collocation 
technique was again used to dekrmine eigenvalues corresponding to the growth rate 
u = uR + in, and the associated complex eigenfunctions xo for various values of h in 
the vicinity of A,. 

InthesecondcaseC = 0-Olforexample,forwhicha = 4-590andhc = 2.251117 x l@, 
as A was increased through the range 2 x lo6 < A 6 4 x 106 all but two of the well- 
represented modes were found to be decaying with time (uR < 0), their decay rates 
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Kl = 0 

Kl = 10-8 

K1 = 10-2 

K1 = 0.1 

K1 = 1.0 

(I 

4.590 
4.590 
4.591 
4.700 
5.066 
5.138 
5.164 
5.164 

3.117 
3-131 
3.507 
4.677 
5.063 
5.135 
5.162 
5-162 

3.118 
3.125 
3.255 
4.514 
5.037 
5.113 
5-141 
5.141 

3.120 
3.130 
3.193 
3.274 
3.561 
3-988 
4.454 
4.841 
4.945 
4.982 
4.982 

3.129 
3.144 
3.201 
3-556 
4.330 
4.493 
4.560 
4-561 

C 
0.001 
0.01 
0.1 
1 -0 
5-0 

10 
100 

00 

0.00 1 
0.01 
0.1 
1.0 
5.0 

10 
100 

00 

0.001 
0.01 
0.1 
1 *o 
5.0 

10 
100 

00 

0.001 
0.01 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10 
100 

00 

0.001 
0.01 
0.1 
1 *o 
5.0 

10 
100 

00 

2.232906 (8) 
2.251117 (6) 
2.440227 (4) 

5 16.2260 
177.33 
166 
162.2 
182.20 

9.299741 (4) 
2.934347 (4) 

8060.134 
609-5479 
177.1 
165.4 
162 
162.0 

2.953241 (4) 
9340.941 
2896.402 
461.5147 
174.83 
164 
160-5 
100.30 

9742.652 
3079.522 
983.8425 
699.8143 
438.9790 
298.3522 
206.081 1 
158.41 
161 
148.6 
146-96 

43 10.935 
1358.338 
432.8282 

181-3287 
121.58 
120-7 
121.1 
106.451 

‘lth 

7.15 ( -  3) 
7.15 (-3) 
7.11 (-3) 
8-73 ( - 3) 
6.05 ( - 3) 
5.93 ( -  3) 
6.89 ( - 3) 
5.89 ( - 3) 

1-02 ( -  2) 
1.02 ( -  2) 
9.19 (-3) 

5.93 ( - 3) 

6.77 ( -  3) 
6.05 ( - 3) 

5.89 ( - 3) 
5.89 

1.02 
1.02 
9.83 
7.02 
6.08 
5.96 
5.92 ( - 3) 
6.92 ( -  3) 

1-02 ( - 2) 
1.02 ( -  2) 
1.00 ( -  2) 
9.77 ( -  3) 
9.00 
7.98 
7-03 
6.34 
6.17 
6.10 
6.1 1 

- 3) 
- 3) 
- 3) 
- 3) 
- 3) 
- 3) 
- 3) 

1.03 (-2) 
1.02 ( -  2) 
1.00 ( -  2) 
9.01 (-3) 
7.13 (-3) 
6.79 ( - 3) 
6.65 ( - 3) 
6.65 ( -  3) 

rlsl 

2.77 ( -  8) 
2-75 ( - 6) 
2.57 (-4) 
1.45 (-  2) 
5.5 ( -2) 
6 (-2) 

6.29 ( -  2) 

0.101 
0.101 
8.03 ( - 2) 
1.74 ( - 2) 
5.6 (-2) 
6 (-2) 

- 

- 
6.34 ( - 2) 

0.101 
0.102 
0.101 

6.1 (-2) 
3.79 ( - 2) 

7 (-2) - 
6.8 (-2) 

0.101 
0.102 
0.110 
0.114 
0.115 
0.107 
9.92 ( -  2) 
0.103 
0.11 

0.10 

9.20 ( -  2) 
9.49 ( - 2) 

- 

0.107 
0.168 
0.248 
0.27 

0.2 
- 

alr 
- 
- 8.58 ( - 3) 
- 7.29 ( - 4) 
- 0.959 
- 3.83 
- 3.99 
- 3.95 
- 3.98 

283 
286 
394 
- 2.94 
- 4.05 
-4.15 
- 4.1 1 
-4.13 

283 
284 
31 3 

2390 
- 7-00 
- 6.55 
- 6.16 
- 6.23 

283 
284 
291 
306 
376 
544 
969 

1800 
2200 
2370 
2366 

296 
294 
289 
326 
476 
511 
523 
524 

TABLE 1. Numerical results of the nonlinear problem for the case B = 0-2, P = 4.6 (cf. chloro- 
benzene). Figures in brackets denote powers of ten. Positive values of a/y correspond to a 
thermal velocity acale (suffix ‘ th ’) and negative values to an ion drift velocity scale (suffix ‘ el ’). 
A horizontal bar denotes insulllcient accuracy achieved. 
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a 

4.690 
4-690 
4.691 
4.700 
6.066 
6.138 
6. 164 

3.126 
3.269 
4.600 
4.699 
6.088 
6.138 
6.164 

3.131 
3.198 
4.126 
4.698 
6.066 
6.138 
6.1 64 

3.166 
3.249 
3.786 
4.683 
6.063 
6.141 
6.168 

3.191 
3.340 
3.793 
4417 
6.036 
5.191 
5.228 

C 
0.001 
0.01 
0.1 
1.0 
6.0 

10 
00 

0.001 
0.01 
0.1 
1 so 
6-0 

al 
10 

0.001 
0.01 
0.1 
1.0 
6-0 

a 
10 

0.001 
0.01 
0.1 
1.0 
6-0 

10 
Q) 

0.001 
0.01 
0.1 
1 *o 
5.0 

10 
00 

A, 
2.232906 (8) 
2.261117 (6) 
2440227 (4) 

616.2260 
177.33 
166 
162-20 

9.268306 (6) 
2.766331 (6) 
2.296686 (4) 

61 6.031 8 
177.34 
166.6 
162.19 

2.936022 (6) 
9.036964 (4) 
1.647717 (4) 

6 14.3386 
177.4 
166 
162.13 

9.689943 (4) 
2.916606 (4) 

7196.864 
601 el884 
178.76 
167 
161*61 

4.192408 (4) 
1.241914 (4) 

3180.806 
609-3583 
204.90 
190 
162.63 

‘lth 

7.16 ( -  3) 
7.16 (- 3) 
7.11 (-3) 
8-73 ( -  3) 
6.06 ( - 3) 
6.93 ( -  3) 
5-89 (-3) 

1.02 (-2) 
9.84 ( - 3) 
7.24 ( -  3) 
6.74 ( - 3) 
6.06 ( -  3) 
5-93 ( - 3) 
6.89 ( -  3) 

1.02 ( -  2) 
1.00 ( -  2) 
7.87 ( -  3) 
6.74 ( - 3) 
6.06 ( -  3) 
8-93 ( -  3) 
5.89 ( - 3) 

1.01 (-2) 
9-88 ( - 3) 
8-53 ( - 3) 
6.76 ( -  3) 
6.04 ( -  3) 
6.92 ( - 3) 
6.87 ( -  3) 

1.01 (- 2) 
9.63 ( -  3) 
8-48 ( - 3) 
8-76 ( -  3) 
6.02 ( -  3) 
5-78 ( - 3) 
5.72 ( - 3) 

rw 

2.77 (-8) 
2-76 ( -  6) 
2.57 ( -  4) 
1.46 (-2) 
6.6 (-2) 
6 ( -2)  
6.29 ( -  2) 

1.02 ( -  3) 
9.48 ( - 4) 
3.46 ( - 4) 
1.46 (- 2) 
6.6 (-2) 

8-28 ( - 2) 

1.03 ( -  3) 
1.06 ( -  3) 

6 (-2) 

7.47 ( -  4) 

6 (-2) 
6-24 ( - 2) 

1-06 ( -  3) 

1.61 (-3) 
1.42 ( -  2) 
6.2 (-2) 

5-86 ( - 2) 

1.46 ( -  2) 
6.6 ( -3)  

1.19 ( -  3) 

6 (-2) 

1-02 ( -  3) 

1.02 ( -  2) 
3-43 ( -  2) 
4 (-2) 

1.24 ( -  3) 
2-08 ( - 3) 

3.14 (-2) 

a/r 
- 9.97 (- 8)t 
-9.81 (-4)t 
- 1.43 
- 3.27 
- 6.18 
- 6.13 
- 6-01 

284 
314 
- 14.6 
- 3.27 
- 6.19 
-6.13 
- 6.02 

283 
293 

1020 
- 3.31 
- 8-26 
-6.19 
- 6.09 

283 
286 
618 - 3.77 
- 8-88 
- 6.79 
- 6-80 

284 
266 
22 1 
- 12.6 
- 17.6 
- 16.3 
- 19.8 

TABLE 2. Numerical reaults of the nonlinear problem for the case B = 0.002, P = 460 (cf. 
transformer oil). Figures in brackets denote powers of ten. Positive valuea of a/y correspond to 
8 thermal velocity scale (suffix ‘th’) and negative values to an ion drift velocity scale (suf f ix  ‘el’). 
Ceees marked t correspond to negative values of a. 

varying little with A. On raising A above 2 x  106 the decay rate of one of the two 
modes of interest decreases whilst that of the other increases. At A = A,(2.176 
x 108 < A, < 2.2 x 106) these modes coalesce and subsequently become a complex 
conjugate pair of decaying oscillatory modes. At A =A,, (2.234 x lo6 < A,, < 2-236 x 106) 
they become neutrally stable with uR = 0 and I nII 2: 0.11 measured on a viscous time 
scale. Then at A = A, (2.2456 x 106 <A, < 2-246 x lo6) these growing oscillatory (over- 
stable) modes coalesce and form subsequently a pair of growing steady modes. As A 
further increases beyond A, one steady mode increases its growth rate, but the other 
growth rate decremes, vanishing at A = A, = 2.2611 17 x lo6, so that the mode be- 
comes a decaying one for A > A,. This latter is clearly identifiable with the ‘exchange 
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(a) The m e  B = 0.2, P = 4.8 (qf. ch2oroben%en~) 

231 

a K1 A, rlth rw  a h  

5.167 - 0.00 1 162.4 5.89 ( - 3) 8.28 ( -  2) - 3.83 
5.164 0 162.20 5-89 ( - 3) 6.29 ( -  2) - 3-98 

5.189 - 0.01 164.21 6.86 ( - 3) 6.7 (-2) - 24?4 
5.539 - 0.1 190.41 5.47 (-3) - 1 4  (-2) - 0.486 

(b) The m e  B = 0.002, P = 460 (cf. traryjormr od) 
a K1 A* rlth *1* 4 Y  

5.164 - 0.01 182.27 5.89 ( - 3) 6.33 ( - 2) - 6.94 
5.162 -0.1 162-95 5-90 ( - 3) 8.71 (-2) - 5*34 

5.164 0 162.20 5-89 ( - 3) 6-29 ( - 2) - 6.01 

5.161 - 0.2 163.8 5.91 (-3) 7-00 ( - 2) - 4.80 
5.178 - 0.4 164.52 6.89 ( - 3) 7.37 ( -  2) - 4-28 

 TAB^ 3. Numerical results of the nonlinear SCLC problem 
in which R = - 20 and K~ Q 0. 

of stabilities’ mode studied in the nonlinear analysis. Significantly perhap this 
analytical detour has revealed the existence of growing oscillatory modes at values 
of h below A,. At the same time this study has confirmed both qualitatively and 
quantitatively the behaviour of the stationary modes deduced from their values of 
a: the value of m ( = crR) as determined by the growth-rate analysis agreed well both 
in sign and in magnitude with the corresponding values of du1, for 181 4 1, deduced 
from the nonlinear problem. Further analysis h a  shown that the critical wavenumber 
for linear overstability in th& case is 4.567. 

Although it is not, in the present discussion, a specific aim to consider the case of 
a hot emitter, corresponding to K~ < 0, where for certain parameter values overstable 
oscillations of the kind just mentioned may be significant, we present in table 3 
several results for the space-charge-limited current situation. It can be seen that the 
character of the instability found at  K~ = 0 is retained in this limit of inh i te  C. How- 
ever, in the c&~e of chlorobenzene for the most negative K ~ B  ( = - 0.02) investigated, 
rB is found to be negative. This implies a reduction of the resulting charge transfer at  
the onset of motion. 

Finally we consider the nonlinear isothermal problem for which K~ * R = 0 for 
various liquids characterized by differing values of Y [cf. (2.12)]. The results are 
presented in figure 3 and table 4. It is immediately apparent that in ell case8 investi- 
gated the branching solutions exhibit unstable subcritical behaviour but that the 
degree of subcritioality depends strongly upon the value of Y. For M 1: 4.8 we find 
that l(a/y)el\ increases rapidly with C for C 5 1. On the other hand for M N 480 we 
find that l(cc/y)e~l incremes slowly with C in a similar manner to that predicted by 
Lacroix (1976). In particular for C = 0.01 we find that (a/-&l N - 1.3 and for C = 10 
that (a/y)el N - 6-1 as compared with hcroix’s values of - 1.6 and - 4.2 respectively. 
We find that for MsC 5 0-25, on rescaling a / y  in terms of a viscous velocity scale 
v / d ,  that it takes a common value 1: - 6.6 x 10- implying that the motion is con- 
trolled by viscosity, i.e. it is characterized by a Reynolds number. 

In terms of an ion drift velocity scale the parameter rs is found to be independent 
of M aa expected analytically, its qualitative behaviour aa a function of C being again 
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00 
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10 

C 
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0.1 
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x x x  X X 
-1.18 (-2) -0'828 -4.62 -5.99 -6.00 

x -4.57 
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x x -4.67 
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X x -4.62 

x -3.31 

x s x -1.78 x -3.25 
-1.34 (-3) -0.126 

x -1.14 
X -0.661 

x -6.21 (-2) 

x x -5.53 (-3) 
-7.15 (-5) 

-8.38 (-9) 
X x -6.90(-7) 

x -6.1 1 

x -6.16 

x -4.81 

x -3.27 

x -2.39 

x -1.89 

x -1.72 
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- 
0. I 1 .O 10 1 00 1000 

M 

FIGURE 3. The effect of varying M in the nonlinear isothermal problem. The figures adjacent 
to data points are values of (a/y)*,, the solutions being unstable subcritical in all cam.  

similar to that predicted by Lacroix using a mean-field analysis. The values obtained 
here, however, are smaller. For example for C = 00 we find that r ,  N 0.06 whereas 
Lacroix finds r, 'Y 0.14. On the other hand comparing values of r , ( c ~ / y ) ~ ~  we find t.hat 
the present results give for example -0.37 for C = 10 in good agreement with the 
value of - 0-38 deduced from Atten 6 Lacroix (1979) who used a modal approximation 
technique with more than one horizontal mode. 

5. Concluding remarks 
It is clear from the results presented that the distinction between a thermally 

modified space-charge type of instability and a BBnard-type space-charge instability 
noted by Worraker &, Richardson (1979) is further highlighted by a weakly nonlinear 
stability analysis. Once again the value of KIB is found to be important in determining 
which of these modes is dominant. The fact that we obtain a supercritical bifurcation 
for the BBnard-type mode and a subcritical bifurcation for the space-charge mode is 
in accordance with expectations based upon simple symmetric models of BBnard 
convection (Palm 1975) and isothermal unipolar electroconvection (Atten &, Lacroix 
1979). 
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M = 4.8 

M = 48 

, M = 480 

a 

M = 0.48 4.680 
5.138 

M = 1.6 4.571 
4.5725 
4.680 
5.041 
5.113 
5.138 
4.571 
4.5725 
4.577 
4.607 
4.634 
4.680 
4.827 
5.041 
5-113 
5.128 
5.138 

4.680 
5.138 

4.571 
4.5725 
4.577 
4.607 
4.660 
4-827 
5.041 
5.113 
5.138 

C 

1 -0 

0.01 
0.1 
1.0 
5.0 

00 

10 
00 

0.01 
0.1 
0.2 
0.5 
0.7 
1 -0 
2.0 
5.0 

10 
100 

00 

1.0 

0.01 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

00 

00 

10 

A, 
510.9926 
160-75 

2-227634 (6) 
2.414757 (4) 

510.9928 
175.71 
164.1 
160.75 

2.227634 (6) 
2.414757 (4) 

6595.051 
1365.393 
821.9014 
510.9926 
258.5078 
175.71 
164.1 
160.8 
160.75 

5 10.9926 
160.75 

2.227634 (6) 
2.414757 (4) 

6595051 
1365.393 
5 10.9926 
2695078 
175.71 
164.1 
160.75 

v4.1 

1.45 (-2)  
8.285 ( - 2) 

2-75 (-6)  
2-87 (-4)  
1.45 (-2) 
5.5 ( -2)  
6 (-2) 
6.285 ( - 2) 
2.75 (-6) 
2.57 (-4)  

4.92 (-3)  
8-51 (-3)  
1.46 (-2)  
3.29 (-2)  
5.5 (-2) 
6 (-2) 

6.285 ( - 2) 
1-45 (-2) 
6.285 ( - 2) 
2.76 (-6)  
2.57 (-4)  
9.59 (-4)  
4.92 (-3)  
1.45 (-2) 
3.29 (-2) 

9.59 (-4)  

- 

5.5 ( -2)  
6 (-2) 
6.288 ( -  2) 

(a/Y)d 

-1* l8 ( -2 )  

- 8.38 ( - 9) 

- 1.34 ( - 3) 

-7.15(-5) 
-0.126 
- 0.753 
- 0.815 
- 0.828 

- 6.90 (-7)  
- 5-53 ( - 3) 
-6.21 (-2)  
- 0.661 
- 1.14 
- 1-78 
- 3.31 
- 4-82 
- 4.67 
- 4-57 
- 4-20 
- 3.25 
- 5.99 
- 1.32 
- 1.72 
- 1.89 
- 2.39 
- 3.27 
- 4.81 
- 6.16 
- 6.11 
- 6.00 

TABLE 4. Numerical reaults for the nonlinear isothermal problem. Figurea in brackets 
denote powers of ten. The horizontal bar denotes insufllcient numerid 8ocumoy echieved. 

Although we have only investigated the case of small-amplitude roll motion near 
the onset of stationary linear instability, the results for Nusselt number N u  and 
electrical Nusselt number Ne together with the relevant values of a/r provide clues 
as to the expecteid behaviour of a thermally stable layer of dielectric liquid subject to 
unipolar charge injection in the vicinity of the critical applied voltage. In the caae of 
supercritical bifurcation, for both chlorobenzene and transformer oil, we find that 
the slope of the Nu(s) curve at  8 = 0 is about 3 or greater. This implies a fairly rapid 
initial growth in the rate of heat transfer with voltage above critical. On the other 
hand the corresponding growth in the rate of charge transfer is at  leaat an order of 
magnitude smaller. In the case of subcritical bifurcation a discontinuous transition 
to finite-amplitude motion is predicted. This in turn implies discontinuous changes 
in both heat flux and electrical current flow. Provided the flow remains laminar there 
will be associated hysteresis phenomena (Lacroix, Atten & Hopfinger 1976; Atten & 
Lacroix 1979). 

A plausible mechanism for the occurrence of overstability when K~ = 0, R is small 
and negative and C is small in the electrical destabilization of Brunt-Viiisiilii 
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oscillations of the gravitationally stable fluid layer. With no electric field applied such 
oscillations are damped by viscosity, but viscous resistance may be overcome if 
sufficiently strong electrical body force fluctuations in phase with velocity can be 
induced. In the Felici ‘hydraulic model’ of electroconvection for C < 1 (Felici 1969), 
in the small amplitude limit, the net electrical driving force is directly proportional to 
velocity. It therefore appears that overstability of the kind envisaged may be excited 
provided that the oscillation is rapid enough not to be thwarted by thermal diffusion 
whilst at the same time being slow enough for space charge fluctuations to remain in 
phase with velocity. Hence we require that thermal diffusion time % period of oscilla- 
tion $ ion transit time, or equivalently that BA % (PIRI)) % 1. In order that such 
periodic motion be the preferred mode of instability we further require that the system 
be not yet unstable to aperiodic disturbances. Of the cases investigated in the non- 
linear analysis those exhibiting negative values of a best satisfy these conditions for 
overstability. Typical values of IvII obtained from the growth rate calculations are 
of the same order of magnitude as the dimensionless Brunt-Vaisllii frequency 
( lR l /P) i .  A preliminary numerical search in the - 0.1 < K~ < 0 domain, corresponding 
to a hot emitter, has suggested that overstability is indeed, in the case of small C, 
small B and small negative R, the preferred form of linear instability (cf. Turnbull 
1968a, b). However, as C increases in magnitude the space-charge-controlled sta- 
tionary instability becomes dominant. This may have important consequences in the 
field of electrohydrodynamic heat-transfer enhancement. 

It is important to recognize the limitations inherent in this investigation. The 
normal-mode cascade analysis presented here is only applicable to small-amplitude 
motions when voltages are in the vicinity of critical for the onset of stationary linear 
instability. The local stability properties of branching solutions have only been con- 
sidered for parallel rolls subject to disturbances of the same form, orientation and 
spatial periodicity. The range of validity of our results is further restricted by two 
important effects. The first is the transition to turbulent flow conveniently character- 
ized by the Reynolds number of the velocity amplitude, for which a suitable critical 
value of 10 has been suggested (Lacroix et al. 1975). In  the case of chlorobenzene 
calculations suggest that for a subcritical bifurcation the motion is probably turbulent 
from its onset whilst for supercritical bifurcation this transition is unlikely to occur 
until h 2 2Ac. On the other hand for transformer oil a subcritical bifurcation is likely 
to lead to a, laminar flow except when C 5 0.1 and K~ 5 whereas for supercritical 
bifurcation the flow will remain laminar up to voltages well above A,. The second effect 
is the removal of charge from regions of the liquid moving towards the emitter when 
the velocity amplitude exceeds the ion drift velocity. The convective heat and charge 
transport laws may then be significantly modified. Imposing in the supercritical 
bifurcation case the restriction that velocity amplitude on an ion drift scale is unity, 
we find least upper bounds of z 1*4Ac for chlorobenzene and 2 1*2Ac for transformer 
oil on the range of validity of our results. 

Finally we have made the same modelling assumptions as Worraker & Richardson 
(1979) including that of the uniformity of charge injection at  the emitter surface and 
the neglect of transient effects. Hexagonal convection cells may occur a t  the onset of 
motion in experiments performed under conditions similar to those of Atten & Lacroix 
(1979). The planform to be expected when the instability is dominated by the effect 
of varying mobility is still open to question. In  addition finite container size, imperfect 
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thermal and electrical insulation properties of side walls and residual electrical 
conduction in the fluid will all affect system behaviour. In  conclusion, these latter re- 
marks remain conjectural until a programme of experimental work subject to 
adequate electrochemical control has been undertaken. 

The above work was supported by a grant from the Science Research Council, 
grant number GR/AO 1 13 1. 

Appendix 
The order A2 system of nonlinear equations L(X,) = Y,, may, using (3.1), be de- 

composed into the two separate systems (3.2) and (3.3). The operators L@), L@) are 
defined by 

L(0) = [ ;4 -f 8 1, (A 1) 
CDQ h,13, A,$$) 

where 13, is defined in (2.14) and 

@(*)  = -BD{KD[ED(.)]} ,  (A 2) 

and 

where l g ( * )  = 4a2B[E(D2-4a2)(*)-C(D&) ( * ) I ,  (A 4) 

(A 5 )  
l&*) = -B(ED[KE~(Da-4a2) 1 ( * ) ] + C [ D ( K Q ) ] D ( * ) ) .  

On writing Yio) = [Y,,,, Yo,, YO3lT and Yi2) = [Ye,, Y2,, GalT we have 

Yo3 = ~ D [ V , ( D 2 - ~ * ) F o ] + ~ ~ , B h , D [ E G o ( D 2 - ~ 2 ) F o +  (DE)GoDFo] (A 6) I yo, = - W v , G o ) ,  yo, = 0, 

- &BA,D[R(DF0) (D2--2) FO], 
and 

(A 7) 

(A 8 )  

I y,, = ! d G o ~ v , - v , ~ G , ) ,  

yZ2 = [v ,03v,  - pv,)  0 2 v , l  + u~BA:[(DF~) ov0 - ~ ~ 0 3 ~ ~ 1 ,  
1 

Y23 = &-(v,D(02-a2)Fo- (Dv,) (D2--U2)Fo 

+ K , B ~ ~ { D [ G ~ D ( E D F ~ ) ]  -a2[ED(GoFo) + 3(DE) GoFo]} 
- BhC{D[K(DFO) ( 0 2 -  a2) Po] - 2a2KF0(D2- a2) Fo}}. 

The definition of the integrals Ill, 12,, 131, 122, 132, 113, lea and 133 is related to the 
cosax component of the third-order problem L(X2) = Y, and the condition (3.21) 
which givo 

(Y11 V,* +Y12G,* +Y13F$) = 0, 

where we have written Y$,l) = (Y,,, Y12, Y1JT and the inner product symbol ( 0 )  now 
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only refers to the z-integration ( ) dz. In this notation we may write 

(A 9)  

l o1  

(Y13F,*) = ((~H3,+sAH,,+AaH,,) F;) = 13,T+I,2sA+ImAa, dA (A 11) 

and combining (A 8)-(A 11)  we derive the amplitude equation (2.26). The individual 
Hi, have the following forms : 

H,, = PQo, H,, = -(D2-a2)&, H31 = -P(D2-a2)Fo, ( A  12), ( A  13), ( A  14) 

Ha, 2: 2[(Da-a2)2&+a2R#o], H3, = C(DQ)&, (A  15), (A  16) 

= - *[&(2DG10 + DQ12) + 2G12D& + g G O D K ,  + 'v,,DGO]Y 

H,, = -p- 1 [ 2x2D3& + (DK8) P& - 2(D&) (0, - W) V,, - &D(D2 - 3a2) V,,] 
(A 17) 

+ @'B$[2(DF,o) (D'-u') FO-2F00F10+~OD(Da-3a2)Fl, 

+ 2(DF0) (0, - 3aa) e2 - (PF',) D e 2  - 2(08F0) F,,], (A 18) 

H3, = f[4KD3F10 + 4(DK) ( 0 8  - 4a2) F,, + 2&D(D8- 49) + (DK,) (0, - as) F, 

+ &clBAc( k D  [ ~ 2 { Q 0 [ 2 ~ 2 ~ 1 0  + (D* - 4a2) F12] + (2GlO + G12) (0, - a,) FO}] 

- &BA~{ K{2(DF0) D ~ F ~ ~  + 4 [ ( P  - a,) F,] D ~ F , ~  + ~ [ D ( D %  - a,) FO] OFlo 

+ (OFo) D(De - 5a2) F12 + 2(D2F0) (0%- 3 a a )  F,, + (DsFo) D e ,  - 2a4F0$,} 

+ K , [ ~ ( D F ~ )  D~F,,  + ( 0 ~ ~ )  (02 - 4a8) F,, + ( 2 q 0  + p12) (D, -as) F ~ I }  

Note that the particular forms given for H,, and H,, in (A 15) and (A 16) have been 
derived from component equations of (2.23a). 

+ 2K2D(D2 - a,) F,] 

+ c[(DFO) D{&(2a10 + G18)} + [D(2&0 + 4 2 1 1  D(&aO) + 2aB&(p0a12+ 

- ~K,BA,(~D[G,,(DF~) (0, - a,) To] - a~GoFo(D2 - a,) Fo). (A 19) 

REFERENCES 

A ~ N ,  P. & LACROIX, J. C. 1979 Nonlinear hydrodynamic stability of liquids subjected to 
unipolar injection. J .  Mdc. 18, 469. 

BRADLEY, R. 1978 Ovemtable electroconvective instabilities. Quart. J .  Meoh. Appl. Ma%. 31, 
381. 

FELICI, N. 1969 Ph6nomAnes hydro et a6rodynmiquea dans la conduction des di6lectriques 
fluides. Rev. Qen. de I'&l!lectricitd 78, 717. 

GROSS, M. J. & PORTER, J. E. 1966 Electrically induced convection in dielectric liquids. Naturs 
212,1343. 

INCE, E. L. 1927 Ordinmy Differ&ial Equations. Longmans. 
JOSEPH, D. D. 1976 Stability of Fhid MotiotEB I ,  Trects in Natural Philosophy, vol. 27. Springer. 



Electrohydrodymmic stability of a layer of dielectric liquid 237 

LACROIX, J. C. 1976 ImtabilitBs hydrodynamiques et Blectroconvection lors d'injection d'ions 
dans lea liquides isolants isotropes, Th&e Doct. Sci. Phys., Universite Scientifique et Medicale 
de Grenoble, France. 

LACROIX, J. C., ATTEN, P. & HOPFINQER, E. J. 1976 Electroconvection in a dielectric liquid 
layer subjected to unipolar injection. J. Fluid Mech. 69, 539. 

MILNE, R. D. 1980 Applied Functional Araalysis, p. 264. Pitman. 
PALM, E. 1976 Nonlinear thermal convection. A m .  Rev. Fluid Mech. 7 ,  39. 
RICEARDSON, A. T. 1980 The linear instability of a dielectric liquid contained in a cylindrical 

annulus and subjwted to unipolar charge injection. Quart. J. Mech. A w l .  Math. 33, 277. 
ROBERTS, P. H. 1969 Electrohydrodynamic convection. Quart. J. Mech. Appl. Math. 22, 211. 
SEQEL, L. A. 1065 The structure of nonlinear cellular solutions to the Boussinesq equations. 

J .  Fluid Me&. 21, 346. 
SEQEL, L. A. 1968 Nonlinear hydrodynamic stability theory and its applications to  thermal 

convection and curved flows. In Non-Equilibrium Thernwdymamics, Variutwlaal Technig-ues 
andStubility (ed. R. J .  Donnelly, R. Herman & I. Prigogine), p. 166. University of Chicago 
PreeS. 

TAKASEIDU, M. & ALDBIDQE, K. D. 1976 The stability of a horizontal layer of dielectric fluid 
under the simultaneous action of a vertical D.C. electric field and a vertical temperature 
gradient. Quart. J. Mech. Appl. Math. 29, 71. 

TuRNBm, R. J. 1968a Electroconvective instability with a stabilising temperature gradient. 
I. Theory. Phga. Fluids 11, 2688. 

m m ,  R. J. 1968b Electroconvective instability with a stabilising temperature gradient. 
11. Experimental results. phy8. F'luids 11, 2697. 

WO-, W. J. & RICEARDSON, A. T. 1979 The effect of temperature-induced variations in 
charge carrier mobility on a stationary electrohydrodynamic instability. J. Fluid Mech. 93, 
29. 


